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Dynamics of quasistatic directional crack growth

O. Ronsin and B. Perrin
Laboratoire de Physique de la Matie`re Condense´e, Ecole Normale Supe´rieure, 24 rue Lhomond, 75231 Paris Cedex 05, France

~Received 2 May 1997!

We report extended experimental results on the dynamics of quasistatic directional crack growth in a brittle
material. Straight propagation, characterized by both the propagation threshold and the crack tip equilibrium
position, enables, within the Griffith energy balance framework, the extraction of the fracture energy and its
dependencies with temperature and crack velocity. It is shown that the apparent variations of the fracture
energy with crack velocity are an effect of the local temperature at the crack tip, which controls the relative
humidity. The oscillating instability of the propagation is described and the results are compared with recent
theoretical work, showing that the sensitivity to details of the experimental conditions implies special care for
quantitative comparison.@S1063-651X~98!02102-3#

PACS number~s!: 46.30.Nz, 62.20.Mk
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I. INTRODUCTION

The study of crack growth has recently been subject t
renewal of interest among physicists. This is essentially
to the nonlinear properties of this moving boundaries pr
lem, which the various tools developed to study dynami
systems may help one to understand. Recent studies of c
growth systems have focused on the formation of patte
either by fragmentation@1#, dessication@2#, or crack interac-
tion @3,4#, and the dynamical instabilities observed duri
crack propagation. This last point has received much at
tion, both from experimental@5–8# and theoretical@9–13#
points of view. Though the nature of some instabilities h
been described, their mechanisms are not yet well un
stood.

Recent experiments@6,7# have shown, because of the lo
calization of the growth front~the crack tip! as in directional
solidification, the ability to control the propagation over
wide range of quasistatic velocities. In this paper, we pres
results on the dynamics of a single crack in a directio
growth experiment, extending previous work@7#.

After describing the experimental setup, we will show
Sec. II that this system exhibits various propagation sta
depending on the amount of elastic energy stored in
samples, which enables the experimental investigation
fundamental problems in brittle fracture, while controllin
the crack front velocity. Among these states, we will focus
Sec. III on straight propagation, by studying both the pro
gation threshold and the equilibrium crack tip position d
ing propagation. Confrontation with an elastic model giv
access to the fracture energy of glass, as well as its de
dencies with the control parameters of the experiment.
will then assess in Sec. IV the problem of the stability
straight crack, and using the results obtained on the frac
energy, we will quantitatively confront our experimental da
with models of quasistatic crack stability.

II. PROPAGATION STATES

The experiment is analogous to directional crystal grow
a crack front is spatially localized within a thermal gradie
and propagation is achieved by driving hot glass samp
PRE 581063-651X/98/58~6!/7878~9!/$15.00
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into a cold bath at constant velocityV ~Fig. 1!. The samples
are thin soda-lime glass plates of thicknesse less than a
millimeter, length of about 1 m, and widthL between 3 and
40 mm. The plates are driven through two temperature ba
they first pass through an oven at temperatureT01DT, made
of two parallel heating elements, separated by a 1.1 mm
to enable the translation of the glass plate without fricti
while ensuring good thermalization; then the plates dip int
large basin of about 30 liters of water at ambient tempera
T0. A circulation of water maintains a constant level of th
surface and increases the efficiency of the cooling of
plate. The dynamic meniscus present at the contact betw
the glass and the water is controlled by preparation of
glass surfaces with a hydrophobic solution@14#, which im-
poses a roughly constant contact angle of 90°. These pre
tions enable a control over the distanceh between the heate
and the cooling bath to within 0.5 mm, for values between
and 10 mm. The driving of the glass plates at constant
locity V is ensured by a stepping motor, paced by a T
clock signal, within the range 0.01 to 10 mm s21.

The stationary thermal field thus induced inside the gl

FIG. 1. Schematic setup of the directional crack growth exp
ment: a thin glass plate of thicknesse50.9 mm and widthL is
driven at constant velocityV from a heater~temperatureT01DT),
into a water bath~temperatureT0), at a distanceh55 mm lower.
The resulting thermal field induces stress in the plate that can
the crack tip in the region between the two temperature baths. T
as the plate moves within the thermal field, the crack front gro
through the glass at the controlled velocityV.
7878 © 1998 The American Physical Society
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samples depends on the difference of temperatureDT, the
distanceh between the baths, and on the driving velocityV,
which advects the temperature field from the heater towa
the cold bath and concentrates the thermal gradient abov
water level, over a characteristic distancedth5D/V, where
D is the thermal diffusion coefficient of the glass (D.0.5
mm2 s21). We have measured the temperature field ins
the glass plates by inserting a typeT thermocouple, made
with 0.05 mm diameter wires, inside a hole 5 mm deep w
a 0.3 mm diameter drilled on the side of a 0.9 mm thick gl
plate ~inset of Fig. 2!. Driving this plate within the baths a
constant velocityV, and recording the temperature as a fun
tion of time t, gives the spatial longitudinal thermal fiel
T(z5z02Vt) inside the plate. The initial positionz0 of the
thermocouple was chosen high enough within the hot b
for the thermal field to be in a stationary state when
probe approaches the gaph. Figure 2 presents the measur
temperature fields for different values of the driving veloc
V. Within the region between the baths, we recover the
pected variations of the temperature field as a function oV:
at low velocities, the advection is negligible and the therm
gradient is uniform, but at higher velocities, we observe
manifestation of advection through the localization of t
thermal gradient near the cold bath, and the higher the
locity, the stronger the effect. Let us note, however, that
temperature baths are imperfect, as the transitions betw
the three zones, the hot thermostat, the gaph, and the cold
thermostat occur over a distance of order 1 mm. These m
surements are reproducible, and for fixed values ofV andh,
the temperature profile scales with the temperature differe
DT. This temperature measurement setup also enabled
check that the stationary temperature field is effectiv
reached after a characteristic timet.h2/D.50 s. The glass
samples thus need to be translated over a distanced.Vt in
order to reach the stationary state of the temperature fie

The thermal stress field in the interior of the glass plate

FIG. 2. In situ measurement of the thermal field is achieved w
a typeT thermocouple, made of 0.05 mm diameter wires, and
serted inside a hole drilled on the side of a 0.9 mm thick glass p
~inset!. The plate is driven through the temperature baths at cons
velocity V, and the temperature is recorded as a function of tim
giving the spatial distribution of the temperature inside the gl
plate, here plotted for three different values of the driving veloc
V. We clearly see the two distinct regimes, of pure diffusion at l
velocities@V50.05 mm s21 ~a!#, and advection at higher velocitie
@V50.3 ~b!, and 0.5 mm s21 ~c!#.
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induced by the thermal expansion of the glass. Here,
plate’s edges are free to deform, and a uniform tempera
gradient leads to no stress@15#, only gradient variations; i.e.
the second spatial derivatives of the thermal field indu
stress inside the plate. For example, in the case of a p
diffusive thermal field (V50), the stress comes from th
boundaries (z50 and z5h) between the three regions o
uniform gradient~Fig. 3!, but an assumption of perfect the
mal baths then leads to a discontinuity of the gradient, wh
overestimates the stress field@7#. According to the Saint-
Venant principle@15#, the stress field induced by these gr
dient variations will extend over a characteristic distance
the order of the plate’s widthL. This parameterL thus en-
ables the control of the amount of elastic energy stored
side the plate.

-
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,
s

FIG. 3. In an elastic plate free to deform, a uniform gradie
does not induce stress. The stress only comes from the variatio
the gradient~here atz50 andz5h), and extend over a region o
characteristic size, the widthL of the plate.

FIG. 4. The various propagation states in the directional cr
growth experiment. According to the plate’s widthL, which con-
trols the amount of elastic energy available, three states are
served, no propagation forL,Lc ~a!, straight propagation forLc

,L,Losc ~b!, and oscillating propagation forL.Losc ~c!. Further
increase ofL leads to irregular behavior of the crack~d! and ~e!.
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7880 PRE 58O. RONSIN AND B. PERRIN
Crack nucleation often requires much more energy t
its propagation, as it occurs essentially from microscopic s
face defects@16,17#, which have a lower stress concentrati
factor than a propagating crack tip, because of their sm
size. The creation of a new crack will thus depend on
surface state of the glass plate, which is difficult to contr
The glass plates are therefore seeded by scratching the
ing edge, and the elastic energy is only used for crack pro
gation.

In a given thermal field (DT, h andV fixed!, the growth
state depends on the plate’s widthL @7#: for low values of
the width, the crack does not grow@Fig. 4~a!#; when L is
greater than a critical valueLc , the crack grows straight
cutting the plate in two equal parts@Fig. 4~b!#. This straight
propagation is stable as long as the plate’s width rema
below a second critical valueLosc, above which the crack
path becomes wavy, making regular oscillations near the
stability threshold@Fig. 4~c!#. Regular oscillations becom
less and less regular asL is further increased@Figs. 4~d! and
4~e!#. These propagation states were always observed, w
ever the thermal field~i.e., DT, V, andh). A phase diagram
can thus be drawn in the parameter space (L,V), with the
width L controlling the available elastic energy, and the dr
ing velocity V controlling both the longitudinal crack veloc
ity ~which is the absolute velocity for straight propagatio!
and the advection of the thermal field.

Let us recall the main result concerning the propagat
states, obtained in Ref.@7#. A typical phase diagram is plot
ted in Fig. 5 in semilogorithmic scale, showing the thr
states of propagation with the transition lines,Lc(V) separat-
ing the no-propagation state from straight propagation,
Losc(V) separating the straight from the wavy propagatio
These two curves are roughly parallel and clearly show th
different regimes as a function of the driving speedV. These
regimes have been related@7# to the variations of the station

FIG. 5. As a function of the driving velocityV, the bifurcation
curvesLc(V) andLosc(V) reflect the variations of the thermal fiel
with V: they are controlled by the distanceh between the baths a
low velocities, the thermal lengthdth in their decreasing part, an
the thicknesse of the plate at higher velocities, leading to a thre
dimensional problem. The crack surfaces shown in the inset il
trate well this transition from two-dimensional to three-dimensio
fracture process.
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ary thermal field withV. The low velocity regime corre-
sponds to a pure diffusive, velocity independent field, wh
the thermal lengthdth is greater than the distanceh between
the baths. At higher velocities, the advection process res
in the decrease of the critical widths withV, and lasts as long
asdth remains bigger than the half thicknesse/2 of the glass
plate, for which the temperature is no longer homogene
inside the plate, leading to increasing critical widths withV.
This last transition from a two-dimensional to a thre
dimensional process is clearly visible on the crack surfac
which are smooth at low velocities and rough at high velo
ties~inset of Fig. 5!. The following analysis will be restricted
to the two first two-dimensional regimes.

III. STRAIGHT CRACK PROPAGATION

The energetic difficulty of crack nucleation implies th
the curveLc(V) ~Fig. 5! only reflects the transition from the
propagating state to the nonpropagating one. The crit
width Lc is thus measured by using plates of slowly decre
ing width. Starting with a widthL.Lc , the seeded crack
first propagates through the plate at the constant driving
locity V, and stops whenL5Lc , its tip sinking with the plate
into the water bath. The rate of width variation is chosen
be less than 1% so that the error on the steady tempera
field matches the width within 1%. In such conditions, t
measurement of the critical widthLc is reproducible with
less than 5% dispersion.

Another interesting dependence ofLc is its variations with
the temperature differenceDT at fixed driving velocityV. In
Fig. 6, we show such a dependence for two fixed values
the driving velocity inside the advective regime of the te
perature field (V50.2 andV50.4 mm s21). Lc decreases
with DT, showing the increase in elastic energy density w
DT, so that for larger values ofDT, less width is needed fo
crack propagation. The figure also shows the best fit of th
data with the scalingLc}1/DT, which is better at high ve-
locities. This scaling can be writtenLc

2(DT)25const, corre-
sponding to onset of propagation when the elastic ene

s-
l

FIG. 6. Variations of the propagation thresholdLc as a function
of the temperature differenceDT between the baths, for two fixed
driving velocitiesV50.2 mm s21 (d) andV50.4 mm s21 (s).
The lines correspond to the best fit of these data to a 1/DT scaling,
which is better at higher velocities, the discrepancy being attribu
to the finite extension of the stress sources.
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(@volume }Lc
2] 3@energy density}(DT)2]) released by

crack propagation reaches a threshold level, as stated b
Griffith criterion for crack growth@16#. The discrepancy be
tween this scaling and the experimental observation can
attributed to the finite extension of the stress sources~the
temperature gradient variations!, which decreases with ve
locity and results in a lower effective affected volume, who
effect is stronger at low values ofLc .

This thresholdLc is clearly linked to the minimal amoun
of energy required for crack propagation. For larger wid
i.e., inside the straight propagation regionLc,L,Losc, the
system adapts to the excess of available elastic en
through another parameter: the crack tip positionztip .

Direct in situ images of the crack tip are obtained using
video camera, with a spatial resolution of 0.1 mm and a ti
sampling between images of 1/50 s. This is only poss
when the equilibrium position lies between the temperat
baths, where reflection of light on the crack surface enab
the visualization of the crack tip.

We have measured the tip equilibrium positionztip when
traveling through the (L,V) phase diagram. The matching o
the system to the available elastic energy via the crack
position is clearly illustrated in Fig. 7, where we have stu
ied the equilibrium tip positionztip as a function of the
plate’s widthL (.Lc) for a fixed temperature field (DT, h,
and V fixed!. For L.Lc , the available elastic energy i
greater than what is needed for propagation, the crack
position stabilizes near the hot bath, i.e., in a lower stres
region. As the widthL decreases towardLc , the available
energy decreases, and the tip position goes closer to the
bath, in a higher stressed region. Finally, whenL reaches its
critical valueLc , the propagation stops and the tip falls wi
the plate into the cold bath.

For fixed values of the plate’s widthL above its critical
valueLc , the crack tip position depends on the driving v
locity V and approximately follows the evolution of the the
mal field with V.

FIG. 7. Evolution of the equilibrium crack tip positionztip as a
function of the plate’s widthL for fixed values of the driving ve-
locity V50.125 mm s21, temperature differenceDT5135°C, and
the distanceh55 mm between the temperature baths. The crack
matches its position toward the high stress region near the cold
to compensate the decrease in plate’s widthL when approaching
the propagation threshold (L→Lc).
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Let us note that theLc(V) curve presents a maximum

Lc
max @see Fig. 5 and Fig. 8~a!#. For L.Lc

max, the equilibrium
position of the crack tip above the cold bath is observed to
a continuously decreasing function of the velocity@Fig.

p
th

FIG. 8. Evolution of the measured equilibrium crack tip positi
ztip with respect to the driving velocityV for two different values of
the plate’s widthL ~triangles!, with DT5135 °C, andh57.5 mm.
When L is higher than the propagation thresholdLc in the whole
range of velocities (L.Lmax), the tip position continuously de
creases withV, following the advection of the thermal field toward
the cold bath~b!. Smaller values ofL can place the system in
different propagation states depending onV ~c!. Approaching the
non-propagation region@Vi ,Vs#, the crack tip goes closer to th
cold bath, but recovers the general trend far from it, the thick lin
are guides for the eye.~b! and~c! also show the predicted crack ti
positions, first with an ideal thermal field~dashed lines!, and with
the measured one~squares!.
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FIG. 9. The use, in the model
of the measured thermal field, e
ther directly ~a! or by fitting it
with analytical functions~b!, leads
to similar quantitative results for
the energy release rateG(z) as a
function of the crack tip position
z. The Griffith energy balance di-
rectly gives the stable equilibrium
tip positionztip by the intersection
of the energy release rateG(z)
and the fracture energyG.
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8~b!#, and illustrates the advection of the thermal field
wards the cold bath. ForLc(V50),L,Lc

max @Fig. 8~c!#, the
crack cannot propagate in a given range ofV(Vi,V,Vs).
ApproachingVi(Vs) from low ~high! velocity, the equilib-
rium position of the crack tipztip is markedly decreasing: th
tip sinks and ‘‘dies’’ into water when entering the nonprop
gating region.

We can analyze these results within the Griffith ene
balance framework@16#: the crack tip is at an equilibrium
position when the amount of elastic energy released fo
crack growth of a unit length equals the amount of ene
needed to create the corresponding surfaces. Per unit sur
this equilibrium can be written as

G~ztip!52g, ~1!

whereg is the surface energy of the fractured material, a
G is the amount of elastic energy released by the creat
during crack growth, of a unit surface.G is the energy re-
lease rate, and only depends, apart from the elastic prope
of the material, on the sample geometry~width L and crack
tip positionztip), and the loading conditions~thermal field!.
A usual extension of this equation, in order to account
dissipation processes other than pure surface energy, con
in introducing the fracture energyG, which contains the sur
face energy 2g and othera priori unknown terms, such a
plastic dissipation, chemical effects, etc.@17# Equation~1! is
then

G~ztip!5G. ~2!

Using linear elastic fracture mechanics, one can calcu
the energy release rateG as a function of the straight crac
tip position z within the thermal field. This has been pe
formed, under plane stress conditions, in Ref.@10# for an
infinite strip of width L, containing a semi-infinite static
crack, submitted to a thermal fieldT(z). These conditions
apply as long as the thermal field is homogeneous inside
plate, that is, as long as the driving velocityV is lower than
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its limiting valueV52D/e ~cf. Sec. II!. At such velocities,
of order 1 mm s21, much lower than the sound speed
glass~hundreds of meters per second!, the crack growth is in
quasistatic conditions, and the effect of the driving veloc
V only accounts via the thermal profileT(z). Recall that the
stress comes from the second spatial derivative of the pro
therefore quantitative comparison with the experimental
sults requires special care in the determination of the pro
We use the measured thermal field in order to make
computed energy release rate match most precisely the
perimental conditions. To include this thermal profile in
the elastic stress computation, two distinct methods h
been used. First the measured profile was fitted with an a
lytical function. To account for the finite extension of th
transitions between the three distinct regions of the temp
ture field @Fig. 9~a!#, we chose the second derivative of th
fitting function to be a sum of two or three Gaussians, who
parameters were adjusted so that the function fits the m
sured thermal field. In the second method, we directly u
the measured thermal field. The high frequency noisy m
sured signal has large local second derivatives, but eac
these induces stress over a spatial length of the order o
plate’s width. The Saint-Venant principle thus acts as a lo
pass filter, with a characteristic size, the widthL of the plate
@Fig. 9~b!#. Furthermore, the sampling step of the spat
thermal field measurement was chosen small enough for
numeric calculation, performed with the use of fast Four
transforms@10#, to provide good accuracy. The similarity o
the energy release rate functionsG(z), obtained with both
methods, is presented in Fig. 9@~a-2! and ~b-2!#, showing
that they both are relevant. Because it is more straight
ward and requires less computation time, we essentially u
the second method to obtain the energy release rate fro
measured thermal profile.

The propagation state of a straight crack in the plate
given by the comparison between the energy release rate
the fracture energy. Depending on the maximum valueGmax
of G(z), there can be either none, one, or two intersectio
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betweenG(z) and the fracture energyG @Fig. 9~b-2!#. The
maximumGmax scales as (DT)2, but has no simple depen
dence withL, though, as expected by applying the Sai
Venant principle, it increases with the plate widthL, show-
ing that for low enough values ofL, there is no intersection
and thus no propagation. Additionally, for large values ofL,
there are two solutions for the equationG(z)5G, corre-
sponding to two possible equilibrium positions for the cra
tip, though only the solution in the decreasing part ofG(z) at
z5ztip is stable. As the plate is translated at constant velo
V through the thermal field, the crack propagates inside
plate. The propagation thresholdLc corresponds to merging
the two intersections into one, at which pointGmax5G.

Adjusting the fracture energy on the measured propa
tion threshold at low velocities, this model has shown to
in good qualitative agreement with the whole dependenc
Lc with V @7#, even with an ideal thermal field, only con
trolled with the two characteristic lengths, the distanceh
between the temperature baths at low velocities, and the t
mal diffusion lengthdth at high velocities.

Quantitative comparison can only be achieved by extra
ing the unknown fracture energyG, the only adjustable pa
rameter of the model, the energy release rate being calcu
with the measured thermal field. It was shown in Ref.@7# that
for high values ofDT, the so derived fracture energy had
weak dependence with the velocityV within experimental
precision.

For a better characterization of this result, we have st
ied the dependence of the fracture energyG with the tem-
perature difference to account for lower values ofDT. Figure
10 shows the fracture energyG as a function of the crack
velocity V for three values of the temperature differenceDT.
The velocity dependence is not so clear~especially within
the experimental precision!, but we can see a clear decrea
of G with DT.

These apparent variations of the fracture energy withV
and DT can be expressed as a dependence with a si
parameter, the local temperatureTtip of the glass at the crac
tip. As the fracture energy was measured as the maxim

FIG. 10. Measured fracture energyG as a function of the crack
velocity V for three different values ofDT @135 (s), 96 (d), and
36 °C (h)#, showing a clear dependence withDT. The error bar is
in the lower right corner.
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Gmax of the energy release rateG(z) at the propagation
thresholdLc , we can thus obtain the positionztip of this
maximum, which is the crack tip position at the propagati
threshold. The temperature fieldT(z) inside the plate being
known, we can obtain the local temperature in the plate
this positionTtip5T(ztip).

Figure 11 shows the dependence of the fracture energG
with this temperatureTtip , for fracture energies measure
both at variousDT and crack velocitiesV. They all group on
the same curve, indicating that variations with bothDT and
V are due to the dependence onTtip . A decrease ofG with
Ttip , with a saturation at high temperatures, is clearly o
served.

This dependence of the fracture energy on the local te
perature at the crack tip is probably related to the we
known effects of water on crack propagation@18#. Water
molecules are known to chemically react with the high
stressed Si-O-Si bonds of the glass at the crack tip, wh
results in a diminution of the fracture energy with the re
tive humidity. We expect the pressure of water vapor at
crack tip to increase with the local temperature at the cr
tip, with a saturation at high temperatures, and thus to ap
ently depend onDT andV, as they both modify the equilib
rium tip position within the thermal field. It should be note
through, that the link between the local temperature and
relative humidity at the crack tip is not clear. Furthermo
direct comparison with classical fracture experiments un
controlled environment is not straightforward as such exp

FIG. 11. The measured fracture energyG plotted as a function
of local temperatureTtip at the crack tip for various values ofV
(0.01–1 mm s21) andDT (20 to 180 °C! shows a unique depen
dence that can be related to stress corrosion effects~the solid curve
is a guide for the eye!.

FIG. 12. Scanned image of a glass sample showing the prog
sive transition from straight to oscillating propagation as a funct
of the plate’s widthL. The glass plate has here a high relati
increase in width for demonstrative purposes.
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7884 PRE 58O. RONSIN AND B. PERRIN
ments usually measure the velocity response to an increa
energy release rate and here, we impose the stationary c
velocity V and extract the fracture energy at a stable equi
rium position of the crack tip.

We have checked these measurements of the fracture
ergy G from the equilibrium crack tip positions. Above th
propagation thresholdLc , the evolution of the crack tip po
sition ztip with V is qualitatively well reproduced by the ela
tic model, as shown in Figs. 8~b! and 8~c!, but the quantita-
tive discrepancy is high. Using both the fracture ene
extracted from the propagation thresholdsLc and the mea-
sured thermal field, the predicted crack tip positions co
closer to the measured ones@Figs. 8~b! and 8~c!#, though
there still remains a large uncertainty, mainly due to the e
caused by the high slope of the energy release rateG(z)
around the equilibrium positionztip , inside the straight
propagation state.

IV. OSCILLATING INSTABILITY

Straight crack propagation remains stable as long as
plate’s width remains below the critical valueLosc. For

FIG. 13. Oscillation wavelengthl as a function of the relative
distance to the instability thresholde5(L2Losc)/Losc, for DT
5135 °C,h55 mm andV50.2 mm s21, showing the finite value
of the wavelengthloscat the threshold and the low dependence w
e.
in
ck
-

n-

y

e

r

he

plates larger than this threshold, the crack path is no lon
straight. Near the thresholdLosc, the crack grows, forming
regular oscillations with a well-defined wavelengthl. As the
width L is increased further, these oscillations become
and less regular@Fig. 4~c!#. One can eventually observe,
these last regimes, the nucleation of a new crack from
crack surface where the curvature is high, thus formin
stress concentrator.

The oscillation thresholdLosc(V) is measured, as for th
propagation threshold, by slowly varying the plate’s widthL
~Fig. 12!. This can be achieved either by an increase o
decrease ofL, as there is, here, no nucleation problem. T
rate of variation of the widthL is chosen as for the measur
ment of Lc , i.e., lower than 1%. The measurement ofLosc
consists in the determination of the point at which the p
followed by the crack is not straight but oscillating, and
thus procedure dependent. This has been achieved by va
methods, by touching the cracked surfaces, or by sigh
razing incidence, leading to the localization of the thresh
within a region of about 1 cm along the crack path. W
such a procedure, we found no significant difference inLosc
measured with either increasing or decreasing plate’s wid

The other characteristic quantity of this instability is
oscillation wavelengthl. Figure 12 shows a numerize
~scanned! image of a cracked glass plate, which shows
progressive transition from straight to oscillating propa
tion. Following the path, we can draw the evolution of t
wavelengthl as a function of the relative distance to th
instability thresholde5(L2Losc)/Losc, as shown in Fig. 13
The wavelength has a finite valuelosc at the threshold and
slowly increases with the plate’s widthL>Losc.

To determine the nature of this instability, we have stu
ied the spatiotemporal dynamics of the crack tip, and m
sured by video means both its longitudinal and transve
positions as a function of time just above the onset~Fig. 14!:
the instability only consists in a transversal oscillation of t
crack tip and the longitudinal propagation speed remains
in the straight regime, the driving velocityV. The oscillation
frequencyf is thus linked to the wavelength measured alo
the path byl5V/ f , and checked the result obtained by d
rect measurement.

The variation of the two characteristic quantitiesLosc and
-
st
ty
s-
FIG. 14. The time evolution of both longitu
dinal and transversal crack tip positions ju
above the onset of the oscillating instabili
shows that the instability only consists in a tran
versal oscillation of the crack tip.
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loscwith the driving velocityV for fixed values ofDT andh,
are drawn in Fig. 15. They manifest the same variation
gimes withV as the critical distanceLc , meaning that they
are related to the corresponding evolution of the thermal fi
through the distanceh between the temperature baths at lo
velocities and the thermal diffusion lengthdth at high veloci-
ties. In Fig. 16 we have reported the variations of the wa
length losc with the thermal lengthdth , both normalized in
units of Losc, for three values of the temperature differen
DT between the two baths. The striking result is the gath
ing of all valueslosc/Losc in the thermal advection regim
over a straight line, whatever the value ofDT. This universal
behavior clearly indicates thatlosc is controlled by the ther-
mal diffusion lengthdth . Whenh controls the thermal field
(dth.h), losc/Loscdeviates from this universal behavior, b
coming velocity independent, confirming that the oscillati
wavelength is controlled by the spatial extension of the te
perature gradient.

Let us now focus on the mechanism of this oscillati
instability. The stability of straight crack propagation is
fundamental problem of fracture mechanics but not yet w
understood. It is related to the problem of the direction
propagation of a crack as a function of the external loadi
In our case, straight propagation in the middle of the plate
according to the symmetries, a pure mode I fracture probl
The fundamental question is: how a perturbation changes
stress field~apparition of shear stress, or mode II!, and how
the crack reacts to that new field. This requires a propaga
condition in mixed-mode fracture~mode I 1 mode II!.
Crack initiation observations show that the presence of sh
stress at the tip of the crack leads to a direction of grow
making a finite angle with the initial crack direction. Assum
ing a generalization to growing cracks, this suggests
smooth propagation occurs along a path where the crac
never feels shear stress, that is,K II50. This is usually re-
ferred to as the criterion of local symmetry. Using this cri
rion, Cotterell and Rice@19# derived a stability condition for
straight crack propagation, which states that straight cr
growth becomes unstable when the nonsingular longitud
tensile stress~calledT in Ref. @19#! at the crack tip is posi-
tive. With such a stress, a perturbation of the direction
propagation will place the crack in an additional openi
tensile stress, leading to an increase of the perturbation.

FIG. 15. Variations ofLosc andlosc with the driving velocityV
for DT5135 °C andh55 mm, showing their similar behavior.
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nonsingular component of the stress field has been comp
from the elastic model using the measured thermal field
done in Ref.@10# but using the measured thermal field, a
the fracture energyG deduced from propagation threshold
The Cotterell-Rice criterion predicts a destabilization of t
straight crack much sooner (Losc.1.05Lc) than what is ac-
tually observed (Losc.1.7Lc) @7#. This discrepancy can be
understood, recalling that this criterion considers strai
propagation in an infinite medium. In our finite geometr
when escaping from straight path, the tip is no longer in
middle of the plate and should feel a stabilizinggeometric
shear stress, due to the rupture of symmetry.

Other models have been proposed to explain this insta
ity. By means of finite element method, Bahret al. @12#
simulated the crack growth, using a discrete formulation
the criterion of local symmetry, i.e., at each time step,
crack direction is changed to suppress any shear stress
tip. The main difference with the Cotterell-Rice analysis
the account for the finite width of the system. Because of
large computation time needed to achieve stationary st
they analyzed the stability of the straight crack growth
studying the relaxation of an oscillating crack towards
stationary state, through the time evolution of the oscil
tion’s amplitude. The latter increases above the instabi
threshold, and decreases below. This analysis led to an in
bility threshold compatible with the experimental observ
tions, though quantitative comparison cannot be perform
as the used thermal field is only characterized by the ther
diffusion lengthdth . On the other hand, the dependence
the oscillation wavelength agrees quantitatively with o
measurement. They found a dependence of the wavele
losc well fitted by losc/Losc.a1bdth /Losc with a.0.14
andb.2.1, to be compared with the experimental values
a.0.15 andb.2.5 ~Fig. 16!. The oscillation wavelength
loscseems far less sensitive to the details of the thermal fi
than the critical widthsLc andLosc, but is controlled by the
spatial scaledth .

FIG. 16. Dimensionless oscillation wavelengthlosc/Losc at the
instability threshold as a function of the dimensionless thermal
fusion lengthdth /Losc for different values of the temperature diffe
ence DT. Within the advective regime (dth,h), all the values
gather in a unique straight line, departing from this universal
havior in the low velocity diffusive regime (dth.h). This shows
that the scaling between the oscillation wavelengthlosc and the
oscillation thresholdLosc is completely controlled by the extensio
of the thermal gradient.
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A recent model, due to Adda-Bediaet al. @13# analyzes
the bifurcation with an original stability criterion. Assumin
a perturbation of the crack path as a sine function of a sm
amplitude, with the crack tip located in the middle of th
plate, they calculate the resulting shear stress at the tip to
order in the amplitude. They state that the future evolution
the growth will tend to reduce that shear stress, leading ei
to an increase or a decrease of the perturbation. This di
ent approach leads to results quantitatively similar to
preceding model@12#, and confrontation with the experi
ment, by using the measured thermal field is under progr

V. CONCLUSION

We have studied the quasistatic propagation of a dir
tional crack. The straight propagation has been descr
through two characteristic quantities, the critical widthLc
required for propagation, and the equilibrium crack tip po
tion ztip . These quantities enabled, by use of an elastic
culation of the energy release rate in the same thermal
ditions, the extraction of the fracture energyG. We have
shown that the apparent dependence of the fracture en
with the crack velocityV and the temperature differenceDT
.
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could be understood as an effect of local temperatureTtip at
the crack tip. This result is compatible with, through n
directly comparable to, the effect of water vapor on surfa
energy of glass.

The stability of the straight crack propagation has be
studied through the critical widthLosc and the oscillation
wavelengthlosc. Confrontation with recent theories show
that quantitative comparison requires the use of the real t
mal field, because of the high sensitivity of the instabil
thresholdLosc to the details of the thermal field, though the
recover the scaling of the wavelengthlosc with the thermal
diffusion lengthdth . Here again, the systematic analysis
the dynamical characteristics of a system in the vicinity
the instability proves to be a powerful analysis tool as well
a fine test for the theory.
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